Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55145 (10 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CR1003]

References

- Bu, X., Coppens, P., Lederle, B. & Naughton, M. (1992). Acta Cryst. C48, 516-519.
- Enraf-Nonius (1985). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- Kobayashi, H., Kato, R., Mori, T., Kobayashi, A., Sasaki, Y., Saito, G. Enoki, T. & Inokuchi, H. (1984). Chem. Lett. p. 179.
- Kobayashi, H., Kato, R., Mori, T., Kobayashi, A., Sasaki, Y., Saito, G., & Inokuchi, H. (1983). Chem. Lett. p. 759.
- Kobayashi, H., Mori, T., Kato, R., Kobayashi, A., Sasaki, Y., Saito, G. & Inokuchi, H. (1983). Chem. Lett. p. 581.
- Williams, J. M., Wang, H. H., Emge, T. J., Geiser, U., Beno, M. A., Leung, P. C. W., Carlson, K. D., Thorn, R. J., Schultz, A. J. & Whangbo, M. H. (1987). *Progress in Inorganic Chemistry*, Vol. 35, edited by S. Lippard, pp. 51–218. New York: John Wiley.

Acta Cryst. (1992). C48, 1565-1566

Structure of (BEDT-TTF)₄Hg₂I₆(I₈)

XIANHUI BU AND PHILIP COPPENS

Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA

(Received 16 December 1991; accepted 11 May 1992)

Abstract

The structure consists of two-dimensional sheets containing both BEDT-TTF [BEDT-TTF, or ET = 3,4;3'4'bis(ethylenedithio)-2,2',5,5'-tetrathiafulvalene] and centrosymmetric I₈ anions. These mixed (ET)–(I₈) sheets are separated by Hg₂I₆²⁻ anions along the *c* axis. Dimers of ET molecules are tilted towards adjacent dimers, similar to the arrangement in κ -phase ET salts.

Comment

Because of their unusual transport properties, salts of BEDT-TTF have attracted considerable attention (Williams *et al.*, 1987). Of particular interest are the organomineral salts, which show the highest superconducting transition temperatures in the BEDT-TTF family or in other organic salts. We report here on the crystal structure of a newly synthesized salt, $(ET)_4Hg_2I_6(I_8)$.

0108-2701/92/081565-02\$06.00

Fig.1. Packing diagram of the unit cell projected down the *a* axis. Thermal ellipsoids are drawn at the 50% level.

Experimental

Crystal data $4C_{10}H_8S_8^+.Hg_2I_6^{2-}.I_8^2$ $M_r = 3716.6$

Triclinic $P\overline{1}$ a = 8.892 (1) Å b = 15.627 (2) Å c = 17.840 (2) Å $\alpha = 66.169 (9)^{\circ}$ $\beta = 79.791 (9)^{\circ}$ $\gamma = 85.810 (9)^{\circ}$ $V = 2231.7 (5) \text{ Å}^{3}$ Z = 1

Data collection Enraf-Nonius CAD-4 3378 observed reflections diffractometer $[I > 3\sigma(I)]$ $R_{\rm int} = 0.034$ $\theta/2\theta$ scans $\theta_{\rm max}$ = 23° Absorption correction: $h = 0 \rightarrow 9$ by integration from crystal $k = -17 \rightarrow 17$ shape $l = -19 \rightarrow 19$ $T_{\rm min} = 0.47, \ T_{\rm max} = 0.81$ 3 standard reflections 6672 measured reflections frequency: 300 min 5716 independent reflections intensity variation: -1.4%

Refinement

Refinement on F Final $R = 0.070$ wR = 0.089	$(\Delta/\sigma)_{\text{max}} = 0.01$ $\Delta\rho_{\text{max}} = 3.6 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{\text{min}} = -2.4 \text{ e } \text{\AA}^{-3}$
S = 3.77	Atomic scattering factors
3378 reflections	from International Tables
297 parameters	for X-ray Crystallogra-
H-atom parameters not re-	phy (1974, Vol. IV, Table
fined	2.3.1)

Data collection: Enraf-Nonius CAD-4 software. Data reduction: Enraf-Nonius (1985) *SDP*. Program(s) used to solve structure: Enraf-Nonius *SDP*. Program(s) used to refine structure: Enraf-Nonius *SDP*. Molecular graphics: Nicolet X-ray products. Software used to prepare material for publication: Enraf-Nonius *SDP*.

© 1992 International Union of Crystallography

 $D_x = 2.77 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-18^{\circ}$ $\mu = 8.981 \text{ mm}^{-1}$ T = 293 KNeedle $0.30 \times 0.08 \times 0.03 \text{ mm}$ Black C7-C8

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²)

$U_{\rm eq} = \frac{1}{2} \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$					
	x	y	z	Um	522 0
Hg1	-0.0120 (2)	0.1340(1)	-0.08060 (9)	0.0626 (5)	C1-S1-
I1	0.1324 (3)	0.1725 (2)	-0.2351 (1)	0.0520 (7)	C1-S2-
12	-0.2247 (3)	-0.0145 (2)	-0.0275 (1)	0.0544 (7)	C2—S3
13	-0.1077 (4)	0.2560 (2)	-0.0117(1)	0.0761 (9)	C2—S4
I4	-0.0165 (3)	0.2424 (2)	0.5655 (1)	0.0600 (8)	C3—S5
15	-0.1519 (3)	0.2921 (1)	0.4220(1)	0.0442 (6)	C4—S6
I6	-0.2959 (3)	0.3506 (2)	0.2701 (1)	0.0596 (8)	C5—S7
I7	-0.0774 (4)	0.4588 (2)	0.0793 (2)	0.095 (1)	C6
S1	0.4724 (9)	0.6862 (5)	0.3823 (5)	0.041 (2)	S1-C1
S2	0.6769 (9)	0.5518 (5)	0.3424 (5)	0.040 (2)	\$1—C1-
S3	0.5912 (9)	0.6186 (5)	0.5605 (5)	0.039 (2)	S2C1-
S4	0.7932 (9)	0.4836 (5)	0.5173 (4)	0.036 (2)	\$3-C2-
S5	0.367 (1)	0.7677 (5)	0.2174 (5)	0.051 (3)	\$3—C2-
S6	0.614 (1)	0.6131 (6)	0.1720 (5)	0.061 (3)	\$4—C2-
S7	0.701 (1)	0.5810 (6)	0.7174 (5)	0.054 (3)	\$1—C3-
S8	0.9322 (9)	0.4116 (6)	0.6674 (5)	0.050 (3)	\$1—C3-
C1	0.608 (3)	0.598 (2)	0.412 (2)	0.030 (7)	S5-C3-
C2	0.657 (3)	0.570 (2)	0.487 (2)	0.032 (7)	S2-C4-
C3	0.478 (4)	0.685 (2)	0.286 (2)	0.046 (8)	S2C4-
C4	0.581 (4)	0.624 (2)	0.265 (2)	0.049 (9)	S6-C4-
C5	0.713 (3)	0.555 (2)	0.632 (2)	0.034 (7)	\$3—C5-
C6	0.806 (3)	0.491 (2)	0.608 (2)	0.036 (7)	S3C5-
C7	0.467 (6)	0.788 (3)	0.120 (3)	0.11 (2)	\$7C5-
C8	0.588 (5)	0.731 (3)	0.100 (3)	0.09(1)	S4—C6-
C9	0.872 (6)	0.517 (4)	0.762 (3)	0.12 (2)	S4—C6-
C10	0.911 (6)	0.433 (3)	0.762 (3)	0.11 (2)	S8-C6-
S1 <i>B</i>	0.598 (1)	0.8965 (5)	0.4339 (5)	0.044 (2)	S5—C7-
\$2 <i>B</i>	0.6828 (9)	1.0901 (5)	0.3859 (4)	0.041 (2)	S6-C8-
S3 <i>B</i>	0.731 (1)	0.8356 (5)	0.6030 (4)	0.046 (2)	S7C9-
S4 <i>B</i>	0.8212 (9)	1.0277 (5)	0.5577 (4)	0.040 (2)	S8-C10
S5 <i>B</i>	0.462 (1)	0.9286 (5)	0.2877 (5)	0.050 (3)	C1 <i>B</i> S1
S6B	0.582 (1)	1.1569 (6)	0.2225 (5)	0.053 (3)	C1 <i>B</i> —S2
S7 <i>B</i>	0.836 (1)	0.7602 (6)	0.7635 (5)	0.067 (3)	C2 <i>B</i> —S3
S8 <i>B</i>	0.949 (1)	0.9915 (6)	0.7079 (5)	0.055 (3)	
	0.674 (3)	0.975 (2)	0.461 (2)	0.032 (7)	Structu
C2B	0.735 (3)	0.950 (2)	0.532 (2)	0.033 (7)	Fourier
C3B	0.560 (3)	0.975 (2)	0.340 (2)	0.034 (7)	and S
C4 <i>B</i>	0.598 (3)	1.066 (2)	0.314 (2)	0.029 (7)	anu S.
C28	0.819 (4)	0.856 (2)	0.675 (2)	0.045 (8)	anisotro
COB	0.859 (3)	0.947 (2)	0.652 (2)	0.036 (7)	was w
C/B 79 D	0.516 (5)	1.008 (3)	0.187 (3)	0.09 (1)	(0.02)E
_8 <u>8</u>	0.545 (8)	1.098 (5)	0.160 (4)	0.18 (3)	(0.02)
.9 B	1.004 (8)	0.807 (4)	0.796 (4)	0.17 (3)	
C10B	0.970 (4)	0.892 (2)	0.805 (2)	0.07 (1)	Sup

Table 2. Geometric parameters (Å, °)

\$1—C1	1.74 (3)	S2B—C4B	1.77 (3)
S1—C3	1.71 (4)	S3B—C2B	1.72 (2)
S2—C1	1.67 (3)	\$3B—C5B	1.76 (4)
S2C4	1.71 (3)	S4B—C2B	1.73 (3)
\$3—C2	1.77 (3)	S4BC6B	1.72 (2)
S3C5	1.75 (3)	\$5B—C3B	1.76 (4)
S4—C2	1.72 (3)	S5B-C7B	1.73 (4)
S4—C6	1.70 (3)	S6B—C4B	1.70 (2)
S5—C3	1.77 (3)	S6B—C8B	1.79 (9)
S5—C7	1.73 (5)	S7B—C5B	1.71 (3)
S6—C4	1.70 (4)	S7B—C9B	1.97 (8)
S6C8	1.80 (4)	S8BC6B	1.75 (4)
S7—C5	1.72 (3)	S8BC10B	1.83 (3)
S7—C9	1.88 (5)	C1B-C2B	1.37 (4)
S8—C6	1.76 (3)	C3B—C4B	1.34 (4)
S8—C10	1.83 (6)	C5B—C6B	1.35 (4)
C1—C2	1.38 (4)	C7B—C8B	1.31 (8)
C3—C4	1.39 (5)	C9B-C10B	1.40 (9)
C5—C6	1.40 (4)	Hg1—I1	2.669 (3)
		-	

0, 00	1.45(7)	11g1—12	2.045 (5)
C9-C10	1.33 (8)	Hg1—I3	2.674 (3)
\$1B—C1B	1.70 (3)	I4—I5	2.821 (3)
\$1 <i>B</i> —C3 <i>B</i>	1.70 (2)	I5—I6	2.979 (3)
S2BC1B	1.75 (2)	I6—I7	3.420 (3)
C1-S1-C3	94. (1)	C2B-S4B-C6B	95. (1)
C1-S2-C4	97. (2)	C3B—S5B—C7B	100. (2)
C2—S3—C5	97. (1)	C4B—S6B—C8B	101. (2)
C2—S4—C6	97. (1)	C5B—S7B—C9B	97. (2)
C3-S5-C7	105. (2)	C6B-S8B-C10B	105. (2)
C4—S6—C8	102. (2)	\$1B-C1B-\$2B	115. (2)
C5—S7—C9	101. (2)	\$1B-C1B-C2B	123. (2)
C6	104. (2)	S2B-C1B-C2B	122. (2)
\$1-C1-S2	116. (2)	\$3B-C2B-\$4B	116. (2)
\$1-C1-C2	121. (2)	S3B-C2B-C1B	121. (2)
S2-C1-C2	123. (2)	S4B—C2B—C1B	123. (2)
\$3—C2—S4	114. (2)	\$1B-C3B-\$5B	114. (2)
\$3-C2-C1	124. (2)	\$1B-C3B-C4B	120. (3)
\$4-C2-C1	122. (2)	S5B-C3B-C4B	125. (2)
\$1—C3—\$5	118. (2)	S2BC4BS6B	116. (2)
\$1—C3—C4	118. (2)	\$2B—C4B—C3B	114. (2)
S5-C3-C4	124. (3)	\$6B—C4B—C3B	130. (3)
S2-C4-S6	119. (2)	\$3B—C5B—\$7B	115. (2)
S2-C4-C3	115. (3)	S3B—C5B—C6B	114. (2)
\$6-C4-C3	126. (2)	\$7B—C5B—C6B	131. (3)
\$3—C5—\$7	116. (2)	S4B—C6B—S8B	115. (2)
\$3—C5—C6	113. (2)	S4B—C6B—C5B	119. (3)
\$7—C5—C6	130. (2)	S8B—C6B—C5B	126. (2)
S4—C6—S8	115. (2)	S5B—C7B—C8B	128. (5)
\$4—C6—C5	119. (2)	S6B—C8B—C7B	126. (5)
S8-C6-C5	 126. (2) 	S7B—C9B—C10B	114. (4)
S5-C7-C8	126. (3)	S8BC10BC9B	114. (4)
S6-C8-C7	120. (3)	II—Hg1—I2	111.5 (1)
S7—C9—C10	122. (5)	I1—Hg1—I3	127.23 (8)
S8-C10-C9	121. (4)	I2—Hg1—I3	111.17 (9)
C1B-S1B-C3B	96. (1)	I4—I5—I6	178.3 (1)
C1B - S2B - C4B	96. (1)	I5—I6—I7	119.3 (1)
C2B—S3B—C5B	96. (1)		

Hg1-I2

2.845 (3)

1.43 (7)

Structure solved by heavy-atom methods and subsequent Fourier methods. Anisotropic thermal parameters for Hg, I and S. No significant improvement in *R* factors when using anisotropic thermal parameters for C. The weighting scheme was $w=1/\sigma^2(F)$ where $\sigma(F)=\sigma(F^2)/2F$ and $\sigma(F^2)=[\sigma^2_{counting}+(0.02|F|^2)^2]^{1/2}$.

Support of this work by the Petroleum Research fund administered by the American Chemical Society (PRF21392-AC6-C) and the National Science Foundation (CHE9021069) is gratefully acknowledged.

Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55146 (41 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CR1004]

References

Enraf-Nonius (1985). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands

Williams, J. M., Wang, H. H., Emge, T. J., Geiser, U., Beno, M. A., Leung, P. C. W., Carlson, K. D., Thorn, R. J., Schultz, A. J. & Whangbo, M. H. (1987). *Progress in Inorganic Chemistry*, Vol. 35, edited by S. Lippard, pp. 51-218. New York: John Wiley.